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Unloaded Q-Factor of Stepped-Impedance
Resonators

GIOVANNI B. STRACCA, SENIOR MEMBER, IEEE, AND ANSELMO PANZERI

Abstract —The paper presents general expressions for the unloaded
Q-factor of stepped-impedance resonators partially loaded with high-
dielectric-constant ceramics to realize miniaturized microwave bandpass
filters. Some theoretical calculations for coaxial resonators are also pre-
sented in diagrams to show a correct design optimization of coaxial
miniaturized filters. The formulas presented in this paper take into account
the imaginary component of the characteristic impedance Z of the lines
constituting the resonator; the resuits previously presented by other authors
neglected such an imaginary component of Z.

The relevant influence that this imaginary component has for the
calculation of the correct unloaded Q of the resonator is pointed out by
this paper through a comparison between correct calculations and calcula-
tions performed by neglecting the imaginary component of Z. Some
experimental results are compared with theoretical calculations.

I. INTRODUCTION

OMPACT BANDPASS microwave filters using cou-

pled coaxial resonators in stepped-impedance struc-
tures partially loaded with high-dielectric-constant ceramics
have been proposed in [1]-{4].

The price paid for miniaturization is a deterioration of
the resonator quality (e.g., of the unloaded Q-factor, Q,,
and of the frequency stability). Typically, the resonator
length may be reduced 20-30 percent of a standard
quarter-wavelength uniform impedance air-filled resonator
with only a small increase of filter losses.

A discussion on the optimization of resonator Q, and
therefore of filter losses is found in [2]. However, as this
paper shows, the results of calculations published in [2] are
not correct. The reason is that for a correct evaluation of
Q, the small imaginary component of the characteristic
impedance of the lossy lines cannot be neglected. As a
consequence, the design optimization presented here yields
very different results from the curves published in [2]. A
general first-order analysis of the Q, evaluation is supplied
in Section II by giving closed formulas for the various loss
contributions to Q,; a comparison with the results pub-
lished in [2] is presented in Section III. Some experimental
results are also presented and compared with the theoreti-
cal calculations in Section IV.
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Structure of a stepped-impedance resonator having a coaxial
structure with uniform outer diameter.

dielectric
Fig. 1.

II. ANALYSIS OF THE RESONATOR UNLOADED
(Q-FACTOR

The stepped-impedance resonator is shown in Fig. 1. It
consists of two sections of length /; and /,, respectively,
having characteristic impedance Z, and Z, with K =
Z,/Z, <1. The section of length /, may be advanta-
geously dielectric-loaded in order to obtain a stronger
reduction both of /, and Z, and therefore of the overall
length /=1/ +1,. The length reduction of the resonator
with respect to the air-filled conventional uniform-imped-
ance A /4 resonator is discussed in [1]-[4]. A reduction
factor can be defined as the following normalized length:

x=41/\ 1)

which evidences the amount of the resonator length reduc-
tion with respect to the A /4 air-filled resonator. If we
neglect, in a first-order approximation (as in [2]), the effect
of higher order modes in the vicinity of the impedance
jump and at the open end and the losses in the radial
surface of the jump, the unloaded Q-factor Q, depends on
three main contributions which, for the sake of simplicity,
may be evaluated separately

1
T 1/Q0, +1/Q04 +1/Q0,

where Q,, is the contribution due to the losses in the
conductors of the transmission lines constituting the reso-
nator, Q,, resulting from the dielectric losses of section /,
if it is dielectric-loaded, and Q,, that comes from the
losses in the terminal short circuit.

In the evaluation of the partial Q-factors (Qq,, Qo4 Qo)
of (2), only the various lost powers have been separated,
while the total magnetic and electric energies, stored in the
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0018-9480,/86,/1100-1214$01.00 ©1986 IEEE



STRACCA AND PANZERI: Q-FACTOR OF STEPPED-IMPEDANCE RESONATORS

whole resonator, have been taken into account. In the
first-order approximation calculations of this paper, these
stored energies have been evaluated as in the lossless case.

A separate evaluation of the various loss contributions
leads to a closed-form expression for Q, which is justified
when the losses are small. Q,, depends on the line attenua-
tion constants, a;, and a, of /; and /,, respectively, due to
the ohmic losses in the line conductors, Q,, on the dielec-
tric loss factor tand, and Q,, on the value of resistor R,
which represents the lossy short circuit. Resistor R is given
by the general expression which does not depend on the
conductors configuration [5]

€

RS
R= 7 Z, (3
where Z _, is the wave impedance of the medium
by
Zoo =\ (4)

and R, is the surface resistance of a conductor of conduc-

tivity o,
Wl ‘
R, = 5
) 2 UC ( )
The value of Q,, can be evaluated by considering con-
tributions Q,, and Q,, separately to Q,, owing to the
losses of the resonator sections /; and /,, respectively (by
supposing that the dielectric, loading /,, is lossless)

1
Qo,= 1 1
— + _
Qn Cw
If in [2, eq. (11)] we introduce the four contributions
individually to the lost power previously discussed and
evaluated from (9) and (10) of [2], we obtain the expres-
sions for Qg, Q. Qou and Q. Correct formulas are
obtained only if we introduce in (9) of [2] the complex
characteristic impedances Z{ and ZJ instead of the real
characteristic impedances Z; and Z, valid only for lossless
lines

(6)

41
Zi=2Z, (1 —j B—l), for the evaluation of Q,;  (7)
1
a
Z5=2, (1 - jﬁ), for the evaluation of Q;,  (8)
2
a
Z,=2z, (1 + B—d- ) ,  for the evaluation of Q,, (9)
2

(10)

In (7)-(10), B, and B, are the phase constants of lines /;
and [,, respectively; «, and a, the corresponding attenua-
tion constants due to the ohmic losses in the line conduc-
tors; a,=1/28,tand is the attenuation constant due to
the dielectric.

By defining 8, = §,-1, and 8, = B,-/,, the following ex-
pressions for Qg;, Qg Qoar and Q,, are found (a shorter
derivation could be used, as shown in [5], which utilizes the

for the evaluation of Q,,.
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lumped-constants equivalent circuit of the resonator)
B, sin(28,) sin(24,)
Qo = 5= oY : (11)
20 L
sin (26,)
29, N 29,
B, sin(26,) sin(26,)
Qoz = 2_a2 202 1 - (12)
sin(24,)
26, N 24,
1 sin(26,) sin(26,)
QOdE tand : 202 (13)
—l 41
sin(26,) -
26,4 — (26
1F G2y SR8
QOs = QOos' (14)

T
where Q,,, is the value of Q,, for an air-filled A /4
resonator

 [2-60,
(15)

o

% 4\ we
which does not depend on the geometry and dimensions of
the resonator.

If in the evaluation of Qg, Qs and Q4> only the real
components Z, and Z, of Z{ and Z; are introduced in (9)
of [2], the following wrong expressions would be found:

/31 8, sin(26;) ,

Qo = ( *5, 8, sin(26,) ) ()
‘ B, 6, sin(26,) o
Qa2 = .....(1+ 6, sin(26,) ) (1)
_ 6, sin(26,) )
Qo= r‘g( % sn(26,) ) (1%)

The values of Qy; and Q,, are therefore overestimated in
(17’) and (13'), respectively, while Q, is underestimated in
(127), as discussed in Section IV.

It should be noted that one expects Q,, very large when
0, is very small. Only the correct (12) confirms this expec-
tation,

The diagrams of Fig. 2 show a normahzed Q. e,
n=0,/Qo,» Vversus the normalized resonator length x.
The reference value Q,,, coincides with the value 8, /2a,
of Oy, for 8, ==/2 and 8, =0, i.e., for the reference case
of a uniform air-filled quarter-wavelength coaxial reso-
nator of characteristic impedance Z, and with an ideal
lossless short circuit. This reference value has been chosen
because it represents generally the highest possible bound
to Q, for a reference air-filled A /4 cavity with an ideal
short circuit. Fig. 2 illustrates, for the case ¢,= 36, the
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Fig. 2. Behavior of the normalized unloaded Q-factor 1=00/Q0m
versus x, for ¢, =36 at different values of K and Q,,, /Q,,, (coaxial

structure type Fig. 1 with Z; = 76 Q). (a) Case of tand = 0. (b) Case of
Qo tand = 0.2,

influence that tané, ¢,, K, Qy,,/Qo4 and Qg,,/00,s have
on @, for Z, =76 © and the structure of Fig. 1.

While correct equations (11)—(14) are general and do
not refer to a particular resonator structure, the diagrams
of Fig. 2 show the behavior of Q, for the particular case of
a coaxial resonator. In fact, in these diagrams, Q,, and
Qq have been evaluated with reference to the coaxial
structure. Examples of diagrams for other resonator struc-
tures are presented in [S], which allow for a comparison
with the coaxial structure presented here. It should be
noted that the influence of B,/(2-a,-Q,,) has already
been taken into account through the choices of ¢,, K,
and Z,. ’

The behavior of 7 is similar for all the values of ¢,, i.e.,
the curves, for any ¢,, improve regularly by decreasing K.
When K is very small, the curves of n approach the values

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-34, NO. 11, NOVEMBER 1986

obtainable with a uniform impedance air-filled coaxial
resonator, tuned with a lumped lossless capacitor C having
the same length /; and the same characteristic impedance
Z,. This does not happen with egs (11’), (12’), and (13").

Regarding the resonator design, the following items
should be noted.

For a given value of ¢,, K, and 8, only one value of 6,
exists (and therefore of /=1, +/, and of the length reduc-
tion coefficient x), that satisfies the simplified resonance
condition [2] which neglects in a first-order approximation
the end-effect, and the discontinuity between /; and /,

tand,- tand, = K. (16)

For a given ¢,, a minimum value of x exists [3], [5] if
K<1/ \Fr (curves of Fig. 2 are therefore limited to this
minimum value of x).

An optimum value of Z; exists, for which Q, is maxi-
mum; this value depends on K, ¢,, #,, and on the geometri-

‘cal structure of resonator lines /; and /,; this value for a

low value of K is somewhat higher than the optimum
value of Z, for the A /4 cavity (see Fig. 3).

The loading with high-dielectric constant materials could
permit better results than with an air-filled cavity because
it is easy to obtain a very low value of K, but only if the
tand of dielectric is sufficiently low compared with 1/Q,,,
(for example with @, -tand = 0.2 an air-filled cavity could
result to be more advantageous).

III. COMPARISON WITH RESULTS THAT NEGLECT
THE IMAGINARY COMPONENT OF THE

CHARACTERISTIC IMPEDANCE

From (11%), (127), (13"), and (14), curves of Figs. 3 and 4
(dashed lines) have been evaluated, which show the behav-
ior of 7, the normalized Q-factor, i.e., 2a;-Q,/B; versus
Z, (Fig. 3) or versus x (Fig. 4). This normalized choice
coincides with that of [2].

These curves have been evaluated for comparison pur-
poses just for the same coaxial resonator, for which the
curves of Figs. 2 and 3(a), published in [2], have been
calculated, i.e., frequency 900 MHz, o,=5.8-10" Q/m,
R,=7.827-10"3, ¢, =35, tand =10~ *, outer conductor di-
ameter =10 mm, B, /2a; =1240, /, =2 mm (Fig. 3), and
Z,=176 Q (Fig. 4). The curves published in [2] are very
similar to those presented here in Figs. 3 and 4, showing
that curves of [2] have been calculated by using only the
real parts Z, and Z, of the characteristic impedances of /,
and /,. For comparitive purposes, Figs. 3 and 4 present
another set of curves (solid lines) evaluated with correct
formulas (11)-(14). The comparison shows the relevant
differences between the results obtainable with the correct
formulas and those obtainable by neglecting the imaginary
parts of Z, and Z,. It should be noted for example that
the wrong curves of the normalized Q-factor versus the
normalized resonator length x present an optimum value
of K (ie., K= 1/\/2), when ¢, >1, which does not exist if
the correct calculations are used. This optimum value has
not been proved in [2], where the curves of normalized Q
were drawn only up to K =1/ \/Z .
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Fig. 3. Behavior of the normalized unloaded Q-factor n=0,/Q.
versus Z, at different values of K (see Fig. 2 of [2]) with /, =2 mm,
€, =35, tand =10"%, and f =900 MHz. Dashed lines show the curves

evaluated with (11'), (12’), (13’), and (14). Solid lines show the curves-

evaluated with (11)-(14).
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Fig. 4. Behavior of the normalized unloaded Q-factor n=0Q,/Qo..
versus x at different values of K (see Fig. 3(a) of [2]) with Z; =76 L,
¢, =35/tand =10"%, f=900 MHz. Dashed lines show the curves
evaluated with (11'), (12'), (13'), and (14). Solid lines show the curves
evaluated with (11)-(14).

As a consequence the inaccurate analysis given by (11),
(127), and (13") penalizes strongly the choice of a low
impedance for /, and particularly the case of air-filled /,,
which requires lower values of K to achieve the same
length reduction.

The strong variation exhibited in the dashed curves of
Fig. 4 by the optimum value of Z,, when K is decreased, is
not found in the correct calculations (solid lines), where
the corresponding variation is very small.
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Finally, it should be observed that the difference be-
tween correct and wrong curves is small in the range of
values near K =1 /\/Z , which is ‘the range of K values
used in the experimental results presented in [2].

IV.  REMARKS ON THEORETICAL RESULTS AND
COMPARISON WITH MEASURED DATA

The theoretical results presented in this paper are con-
firmed by the measured data presented in Table 1. How-

ever, some comments on the reasons why the imaginary

component of Z* cannot be neglected in calculations seem
useful in order to understand better the comparison with
theoretical calculations. ,

The correct real component R; of the input impedance
of a short-circuited uniform line having propagation con- -
stant y = a + jB is, as is well known,

R,=Re{Z’tanh(vI)} (17)

which, in case of ohmic losses, gives results greater than
the value R, obtained by putting Z instead of Z” in (17).
For example, in case of [ < A /4, this last value becomes
half 'of the correct first-order value R;=2Zal. The con-
trary behavior is true for an ideal open-circuited uniform
line section of length / < A /4, having only ohmic losses. In
fact, the correct real component G, of the input admit-
tance

G,=Re{Y’tanh(y/)} (18)

gives results smaller than the value obtained by neglecting
the imaginary component of Y’=1/Z’ in (18). For exam-
ple, in case of I < A /4, this last value becomes G, =Yal,
while the correct first-order value is zero. .

These considerations clarify why use of Z instead of Z’

in (9) of [2] leads one to overestimate ohmic losses in line 2

and to underestimate ohmic losses in line 1, while the
stored energies are not modified in first-order approxima-
tion. In air-filled resonators, the overall effect is to under-
estimate Q,, when K is small, i.e., when losses in line 2 are
greater. '

Similar considerations may be made to understand why
dielectric losses are underestimated by neglecting the imag-
inary component of Z’ in line 2. This effect may some-
times mask the effect of overestimation of ohmic losses in
line 2. The measured data, presented in Table I, confirm
these remarks as well the general behavior, observed in the
graphs presented in the paper. Table I compares measured
data and results of theoretical calculations obtained both
with the set of equations (11)~(14) and with the set (117),
(12", (13’), and (14).

In calculations, a o value smaller than the value o =
5.8-107 for copper has been used, as a practical value
which typically reduces to a few percent the range of
discrepancies among measured data and corresponding
values calculated with the set of equations (11)-(14). A
reduction factor of 0.56 has been assumed for samples 1-5
and 0.62 for the last three samples. '
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TABLE I
COMPARISON BETWEEN THEORETICAL RESULTS AND
MEASURED DATA

resonator data QO
resonator freq. Z, Outer | K X £, tand measured calculated values
diam. data (11,12,13) (11',127,13")

CHz Ohm| mm (14) (14)
1 .9 77 10 |.06|.15 35 | 107 751 [2] 754 637
2 .9 771 10 08 | .15 35 | 107" 729 2] 742 692
3 .9 771 10 [.105] .15 35 1074 705 [2] 706 700
4 .9 77| 10 17 | .27 35 107! 809 [2] 812 843
5 .9 77 10 .2 .27 35 | 107 g12 [2] 811 834
6 2 76| 10 16 | .29 35 f.107t 760 800 976
7 2 76 10 .1 | .4 1 0 1210 1213 504
8 2 76 | 10 |.05 | .4 1 0 1300 1308 313

Measured data on resonators 1-5 of Table I have been
taken from [2] in order to show that the behavior of the
experimental results of [2] agree with the calculations
obtained through the correct set of equations (11) to (14).
The remaining measured data have been obtained in the
Telettra Laboratories in Milan, Italy.

The first six resonators in Table I use dielectric filling of
line 2, while the last two resonators are air filled in order
to illustrate the effect of a large range of dielectric permit-
tivities €, (between 1 and 35).

The first three resonators show that, when K is changed,
both correct calculations and measured data present the
same behavior, while calculations performed by neglecting
the imaginary component of the characteristic impedances
present the opposite behavior. In fact, both measured data
and correct results of calculations increase by about 7
percent by reducing K from 0.105 to 0.06 with x =0.15;
on the contrary, Q, values calculated with (117), (127),
(13"), and (14) decrease of about 9 percent, by giving
evidence to the effect of overestimation of ohmic losses in
line 2 for low values of K, previously described.

Resonators 4—6, with higher values of K, give evidence
to the effect of underestimation of dielectric losses in the
calculations performed with (11’), (12’), and (13’) with
respect both to correct calculations and to measured data.
This effect is particularly evident for resonator 6. In fact, a
Q,=1290 would be calculated both with (11)-(14) and
(11, (127, (13’), and (14) if a lossless dielectric would
have been assumed.

The comparison of correct calculations and measured
data with the calculations performed with (11’), (127), (13")
and (14) for the air-filled resonators 7 and 8 gives greater
evidence that these equations lead to an overestimation of
ohmic losses in line 2, when K is very small. In fact, in this
case (tand = 0) this effect is not masked by the under-
estimation of dielectric losses.

V. CONCLUSIONS

The design of resonators for compact microwave band-
pass filters using stepped-impedance structures has been
reviewed. General formulas have been presented for the
unloaded Q-factor of resonators by analyzing separately
the various loss contributions to overall Q’s; these for-
mulas allow for a correct design optimization of resonators
for any geometrical structure. Curves have also been pre-
sented to illustrate the behavior of Q, for coaxial reso-
nator parameters and its dependence on various resonator
parameters and on the level of miniaturization (i.e., on the
length reduction of factor x).

The paper points out the importance, for a correct
analysis, of taking into account the imaginary part of the
characteristic impedances of lines /; and /,. A comparison
between the results of correct calculations and those ob-
tained by neglecting this imaginary component proves the
relevancy of the influence of this component.

The theoretical results presented in this paper have been
confirmed by experimental results.
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